A Counterexample to Wegner's Conjecture on Good Covers

نویسنده

  • Martin Tancer
چکیده

In 1975 Wegner conjectured that the nerve of every finite good cover in R is d-collapsible. We disprove this conjecture. A good cover is a collection of open sets in R such that the intersection of every subcollection is either empty or homeomorphic to an open d-ball. A simplicial complex is d-collapsible if it can be reduced to an empty complex by repeatedly removing a face of dimension at most d − 1 which is contained in a unique maximal face.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

Covers in Uniform Intersecting Families and a Counterexample to a Conjecture of Lovász

We discuss the maximum size of uniform intersecting families with covering number at least . Among others, we construct a large k-uniform intersecting family with covering number k, which provides a counterexample to a conjecture of Lov asz. The construction for odd k can be visualized on an annulus, while for even k on a Mobius band.

متن کامل

Finite planar emulators for K4, 5-4K2 and K1, 2, 2, 2 and Fellows' Conjecture

In 1988 Fellows conjectured that if a finite, connected graph admits a finite planar emulator, then it admits a finite planar cover. We construct a finite planar emulator for K4,5 − 4K2. Archdeacon [Dan Archdeacon, Two graphswithout planar covers, J. Graph Theory, 41 (4) (2002) 318–326] showed that K4,5−4K2 does not admit a finite planar cover; thusK4,5−4K2 provides a counterexample to Fellows’...

متن کامل

A 64-Dimensional Counterexample to Borsuk's Conjecture

Bondarenko’s 65-dimensional counterexample to Borsuk’s conjecture contains a 64-dimensional counterexample. It is a two-distance set of 352 points.

متن کامل

On the Construction of a C-counterexample to the Hamiltonian Seifert Conjecture in R

We outline the construction of a proper C2-smooth function on R4 such that its Hamiltonian flow has no periodic orbits on at least one regular level set. This result can be viewed as a C2-smooth counterexample to the Hamiltonian Seifert conjecture in dimension four.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2012